Skip to content

Software Development#

Vibe Coding: A Human-AI Development Methodology

How senior engineers and AI collaborate to deliver 10x development velocity without sacrificing quality or control.

TL;DR

Vibe Coding is a methodology where senior engineers provide strategic direction while AI agents handle tactical implementation. This approach delivers 60-80% time reduction while maintaining or improving quality through human oversight and systematic verification.

Table of Contents

  1. Introduction: Beyond AI-Assisted Coding
  2. Core Philosophy
  3. The Vibe Coding Process
  4. Real-World Implementation Examples
  5. Performance Metrics and Outcomes
  6. Tools and Technology Stack
  7. Common Patterns and Anti-Patterns
  8. Advanced Techniques
  9. Getting Started with Vibe Coding
  10. Real-World Case Study
  11. Conclusion

Introduction: Beyond AI-Assisted Coding

Most "AI-assisted development" tools focus on autocomplete and code generation. Vibe Coding is fundamentally different—it's a methodology where senior engineers provide strategic direction while AI agents handle tactical implementation. This isn't about writing code faster; it's about thinking at a higher level while maintaining complete control over the outcome.

Relationship to Traditional "Vibe Coding"

The term "vibe coding" was coined by AI researcher Andrej Karpathy in February 2025, describing an approach where "a person describes a problem in a few natural language sentences as a prompt to a large language model (LLM) tuned for coding."1 Karpathy's original concept focused on the conversational, natural flow of human-AI collaboration—"I just see stuff, say stuff, run stuff, and copy paste stuff, and it mostly works."

alt text

However, some interpretations have added the requirement that developers "accept code without full understanding."2 This represents one particular form of vibe coding, often advocated for rapid prototyping scenarios. We believe this limitation isn't inherent to Karpathy's original vision and may actually constrain the methodology's potential.

Our Approach: We build directly on Karpathy's original definition—natural language collaboration with AI—while maintaining the technical rigor that senior engineers bring to any development process. This preserves the "vibe" (the flow, creativity, and speed) while ensuring production quality.

Why This Honors the Original Vision: Karpathy himself is an exceptionally skilled engineer who would naturally understand and verify any code he works with. The "vibe" isn't about abandoning engineering principles—it's about embracing a more intuitive, conversational development flow.

Karpathy's Original Vibe Coding: Natural language direction with conversational AI collaboration
Some Current Interpretations: Accept code without understanding (rapid prototyping focus)
Production Vibe Coding: Natural language direction with maintained engineering oversight

Our methodology represents a return to the core principle: leveraging AI to think and create at a higher level while preserving the engineering judgment that makes software reliable.

Core Philosophy

Strategic Collaboration, Not Hierarchy

In traditional development, engineers write every line of code. In Vibe Coding, humans and AI collaborate as strategic partners, each contributing distinct strengths. This isn't about artificial hierarchy—it's about leveraging complementary capabilities.

The Human's Role: Providing context that AI lacks access to—business requirements, user needs, system constraints, organizational priorities, and the crucial knowledge of "what you don't know that you don't know." Humans also catch when AI solutions miss important nuances or make assumptions about requirements that weren't explicitly stated.

The AI's Role: Rapid implementation across multiple technologies and languages, broad knowledge synthesis, and handling tactical execution once the strategic direction is clear. AI can work faster and across more technology stacks than most humans.

AI's Advantages: AI can maintain consistent focus without fatigue, simultaneously consider multiple approaches and trade-offs, instantly recall patterns from vast codebases, and work across dozens of programming languages and frameworks without context switching overhead. AI doesn't get frustrated by repetitive tasks and can rapidly iterate through solution variations that would take humans hours to explore.

Human I/O Advantages: Humans have significantly higher visual processing throughput than AI context windows can handle. A human can rapidly scan long log files, spot relevant errors in dense output, process visual information like charts or UI layouts, and use pattern recognition to identify issues that would require extensive context for AI to understand. This makes humans far more efficient for monitoring, visual debugging, and processing large amounts of unstructured output.

Training Pattern Considerations: AI models trained on high-quality code repositories can elevate less experienced developers above typical industry standards. For expert practitioners, AI may default to "best practice" patterns that don't match specific context or expert-level architectural decisions. This is why the planning phase is crucial—it establishes the specific requirements and constraints before AI begins implementation, preventing reversion to generic training patterns.

Why This Works: AI doesn't know what it doesn't know. Humans provide the missing context, constraints, and domain knowledge that AI can't infer. Once that context is established, AI can execute faster and more comprehensively than humans typically can.

Quality Through Human Oversight

AI agents handle implementation details but humans maintain quality control through:

  • Continuous review: Every AI-generated solution is examined before integration
  • Testing requirements: Changes aren't complete until verified
  • Architectural consistency: Ensuring all components work together
  • Performance considerations: Optimizing for real-world usage patterns

The Vibe Coding Process

1. Context Window Management

The Challenge: AI assistants have limited context windows, making complex projects difficult to manage.

Solution: Treat context windows as a resource to be managed strategically.

Planning Documentation Strategy

Complex development projects inevitably hit the limits of AI context windows. When this happens, the typical response is to start over, losing all the accumulated context and decisions. This creates a frustrating cycle where progress gets reset every few hours.

The solution is to externalize that context into persistent documentation. Before starting any multi-step project, create a plan document that captures not just what you're building, but why you're building it that way.

# plans/feature-name.md
## Goal
Clear, measurable objective

## Current Status  
What's been completed, what's next

## Architecture Decisions
Key choices and rationales

## Implementation Notes
Specific technical details for continuation

Why This Works: When you inevitably reach context limits, any team member—human or AI—can read the plan and understand exactly where things stand. The plan becomes a shared knowledge base that survives context switches, team handoffs, and project interruptions.

The Living Document Principle: These aren't static requirements documents. Plans evolve as you learn. When you discover a better approach or hit an unexpected constraint, update the plan immediately. This creates a real-time record of project knowledge that becomes invaluable for similar future projects.

Context Compression: A well-written plan compresses hours of discussion and discovery into a few hundred words. Instead of re-explaining the entire project background, you can start new sessions with "read the plan and let's continue from step 3."

Information Density Optimization
  • Front-load critical information: Most important details first
  • Reference external documentation: Link to specs rather than repeating them
  • Surgical changes: Modify only what needs changing
  • Progressive disclosure: Reveal complexity as needed

2. Tool Selection and Usage Patterns

The breakthrough in Vibe Coding productivity came with direct filesystem access. Before this, collaboration was confined to AI chat interfaces with embedded document canvases that were, frankly, inadequate. These interfaces reinvented existing technology poorly and could realistically only handle one file at a time, despite appearing more capable.

The Filesystem Revolution: Direct filesystem access changed everything. Suddenly, AI could work on as many concurrent files as necessary—reading existing code, writing new implementations, editing configurations, and managing entire project structures simultaneously. The productivity increase was dramatic and immediate.

Risk vs. Reward: Yes, giving AI direct filesystem access carries risks. We mitigate with version control (git) and accept that catastrophic failures might occur. The benefit-to-risk ratio is overwhelmingly positive when you can work on real projects instead of toy examples.

The Productivity Multiplier: Once AI and human are on the "same page" about implementation approach (through planning documents), direct filesystem access enables true collaboration. No more copying and pasting between interfaces. No more artificial constraints. Just real development work at AI speed.

Filesystem MCP Tools for System Operations

  • File operations (read, write, search, concurrent multi-file editing)
  • System commands and process management
  • Code analysis and refactoring across entire codebases
  • Performance advantages over web-based alternatives

We recommend Desktop Commander as it was the first robust filesystem MCP tool and has proven reliable through extensive use, though other similar tools are now available.

Web Tools for External Information

  • Research and documentation
  • API references and examples
  • Third-party service integration
  • Market and competitive analysis

Decision Tree Example:

Need to modify code?
├─ Small change (< 5 files) → Brief discussion of approach, then implement
├─ Large refactor → Formal plan document, then chunked implementation
└─ New feature → Architecture discussion + formal plan, then implementation

Need external information?
├─ Technical documentation → Web search + fetch
├─ Code examples → Web search for patterns
└─ API specifications → Direct URL fetch

3. Communication Patterns

Colleague-Level Context Sharing

The Mindshare Approach: Talk to AI like you would a trusted colleague - with stream-of-consciousness insights, background context, and natural explanation of constraints and motivations.

Always start with "why" embedded in "how"

Human: "I can tell when we're approaching context limits by looking at the scrollbar size, and it's frustrating to lose all our progress when we hit that wall. We need a token counter in the UI so I can see it coming and plan accordingly."

AI: "That makes perfect sense - you want early warning rather than hitting a cliff. For the UI integration, should this be:
- Real-time count that updates as you type?
- Conversation total vs. just current draft?
- Positioned where you can see it peripherally?"

Why This Works:

  • Natural conversation reveals context that formal requirements miss
  • Stream-of-consciousness often contains the most important insights
  • Colleague-level sharing builds the mindshare needed for good solutions
  • AI can reflect back understanding and surface questions organically
Avoiding the Fallback Trap

Anti-pattern: "Let me add a fallback mechanism..."

Better approach: "Let me understand why the primary approach isn't working..."

Why This Matters: Fallbacks often mask root problems and create technical debt. Vibe Coding emphasizes solving the right problem correctly.

Efficient Process Handoffs

The Polling Problem: AI polling long-running processes wastes context window space and prevents productive work on other tasks.

Human Monitoring Advantage: Humans can efficiently monitor processes using visual cues (progress bars, log scrolling, system notifications) while AI would need to repeatedly check status, consuming context with each poll.

For Long-Running Processes:

AI: "This database migration will take 15+ minutes. Rather than me polling 
every few seconds and wasting context window, I'll:

1. Provide you the command and monitoring approach
2. Set up success/failure criteria to watch for
3. Work on other tasks while you monitor
4. Resume when you signal completion or need troubleshooting

Command: python manage.py migrate --database=production
Watch for: 'Migration complete' or any ERROR messages
Should I proceed with the next task while you monitor this?"

Context Window Efficiency: This keeps AI productive on other work while humans use their superior I/O bandwidth for monitoring tasks.

4. Surgical Editing Approach

Philosophy: Modify only what needs changing to preserve working functionality and minimize risk.

The Pattern: Make precise, minimal changes rather than large refactoring operations that could introduce bugs or break existing systems.

# Good: Precise, minimal change
edit_block(
    file_path="service.py",
    old_string="def process_data(self):\n    return self.data",
    new_string="def process_data(self):\n    self.validate_input()\n    return self.data"
)

# Avoid: Large blocks with minor changes that risk breaking working code

Why This Matters: Working software is valuable. Surgical changes reduce risk, maintain system stability, and preserve the proven functionality while making targeted improvements.

When to Apply: Any time you're modifying existing, working code. The smaller and more focused the change, the easier it is to verify correctness and roll back if needed.

Note to LLMs

Chunked Writing Strategy: Always write files in chunks of 25-30 lines maximum. This is standard practice, not an emergency measure.

Implementation Pattern:

# Step 1: Create file with initial chunk
write_file(path, first_chunk, mode='rewrite')

# Step 2: Add subsequent chunks  
write_file(path, second_chunk, mode='append')
write_file(path, third_chunk, mode='append')

Why: Reduces cognitive load, enables progressive review, minimizes context switching, and improves error recovery. Chunk proactively - don't wait for performance warnings!

5. Testing and Verification

Nothing is Complete Until Tested

Verification Requirements:

  • Functionality works as intended
  • No regressions introduced
  • Performance within acceptable bounds
  • Integration points tested

Testing Handoff Pattern:

AI: "Implementation complete. For verification:
1. Run test_new_feature.py
2. Check integration with existing auth system
3. Verify performance benchmarks
4. Test error handling scenarios

Should I run these tests or would you prefer to verify?"

Progressive Verification
  • Test incrementally during development
  • Verify each chunk before proceeding
  • Maintain test coverage metrics
  • Document test scenarios in plans

Real-World Implementation Examples

Architecture Discussion Pattern

Human: "We need to add real-time notifications"

AI: "Let me think through the architecture options:

1. **WebSocket-based**: 
   - Pros: Real-time, bidirectional
   - Cons: Connection management complexity
   - Best for: High-frequency updates

2. **Server-Sent Events**:
   - Pros: Simpler, automatic reconnection
   - Cons: Unidirectional only
   - Best for: One-way notifications

3. **Polling with smart intervals**:
   - Pros: Simple implementation
   - Cons: Higher latency, more requests
   - Best for: Low-frequency updates

Given your current Flask stack and notification frequency requirements, 
I'd recommend SSE. Should we proceed with this approach?"

Result: Human makes informed decision with full context of trade-offs.

Problem Resolution Pattern

Human: "The Docker build is failing"

AI: "Let me investigate systematically:
1. Check the build log for specific errors
2. Verify Dockerfile syntax and layer dependencies
3. Check for base image compatibility issues
4. Examine any recent changes to dependencies

Rather than adding fallback mechanisms, I'll identify the root cause first."

Process:

  1. Gather information before proposing solutions
  2. Test hypotheses systematically
  3. Fix root cause, not symptoms
  4. Document resolution for future reference

Integration Challenge Example

Human: "The new auth service isn't working with our existing API"

AI: "Let me trace through the integration points:
1. Authentication flow and token format
2. API endpoint expectations vs. new service output
3. Error handling between services
4. Timing and timeout configurations

I see the issue - the token format changed. Instead of adding a 
compatibility layer, let's align the services properly."

Domain Expert Collaboration Pattern

Vibe Coding isn't limited to software engineers. Any domain expert can leverage their specialized knowledge to create tools they've always needed but couldn't build themselves.

Real-World Example: A veteran HR professional with decades of recruiting experience collaborated with AI to create a sophisticated interview assessment application. The human brought invaluable domain expertise—understanding what questions reveal candidate quality, how to structure evaluations, and the nuances of effective interviewing. The AI handled form design, user interface creation, and systematic organization of assessment criteria.

Result: A professional-grade interview tool created in hours that would have taken months to develop traditionally, combining lifetime expertise with rapid AI implementation.

Key Pattern:

  • Domain Expert provides: Years of specialized knowledge, understanding of real-world requirements, insight into what actually works in practice
  • AI provides: Technical implementation, interface design, systematic organization
  • Outcome: Tools that perfectly match expert needs because they're built by experts

Note: This collaboration will be explored in detail in an upcoming case study on domain expert-AI partnerships.

Performance Metrics and Outcomes

Real-World Productivity Gains

Our Experience: When we plan development work in one-week phases, we consistently complete approximately two full weeks worth of planned work in a single six-hour focused session.

This means: 14 days of traditional development compressed into 6 hours - roughly a 56x time compression for planned, collaborative work.

Why This Works: The combination of thorough planning, immediate AI implementation, and continuous human oversight eliminates most of the typical development friction:

  • No research delays (AI has broad knowledge)
  • No context switching between tasks
  • No waiting for code reviews or approvals
  • No debugging cycles from misunderstood requirements
  • No time lost to repetitive coding tasks

Quality Improvements

  • Fewer bugs: Human oversight catches issues early
  • Better architecture: More time for design thinking
  • Consistent code style: AI follows established patterns
  • Complete documentation: Plans and decisions preserved

Knowledge Transfer

  • Reproducible process: New team members can follow methodology
  • Preserved context: Plans survive team changes
  • Continuous learning: Both human and AI improve over time
  • Scalable expertise: Senior engineers can guide multiple projects

Tools and Technology Stack

Primary Development Environment

  • Desktop Commander: File operations, system commands, code analysis
  • Claude Sonnet 4: Strategic thinking, architecture decisions, code review
  • Git: Version control with detailed commit messages
  • Docker: Containerization and deployment
  • Python: Primary development language with extensive AI tooling

Workflow Integration

  • MkDocs: Documentation and knowledge management
  • GitHub: Code hosting and collaboration
  • Plans folder: Context preservation across sessions
  • Testing frameworks: Automated verification of changes

Context Management Structure

/project-root/
├── plans/               # Development plans and status
├── docs/               # Documentation and guides  
├── src/                # Source code
├── tests/              # Test suites
└── docker/             # Deployment configurations

Common Patterns and Anti-Patterns

Successful Patterns

1. Plan → Discuss → Implement → Verify

1. Create plan in plans/ folder
2. Discuss approach and alternatives
3. Implement in small, verifiable chunks
4. Test each component before integration

2. Progressive Disclosure

- Start with high-level architecture
- Add detail as needed for implementation
- Preserve decisions for future reference
- Update plans with lessons learned

3. Human-AI Handoffs

AI: "This requires domain knowledge about your business rules. 
Could you provide guidance on how customer tiers should affect pricing?"

Anti-Patterns to Avoid

1. The Fallback Trap

❌ "Let me add error handling to catch this edge case"
✅ "Let me understand why this edge case occurs and fix the root cause"

2. Over-Engineering

❌ "I'll build a generic framework that handles all possible scenarios"
✅ "I'll solve the immediate problem and refactor when patterns emerge"

3. Context Amnesia

❌ Starting fresh each session without reading existing plans
✅ Always begin by reviewing current state and previous decisions

4. Tool Misuse

❌ Using web search for file operations
✅ Desktop Commander for local operations, web tools for external information

Advanced Techniques

Multi-Agent Coordination

For complex projects, different AI agents can handle different aspects:

  • Architecture Agent: High-level design and system integration
  • Implementation Agent: Code generation and refactoring
  • Testing Agent: Test creation and verification
  • Documentation Agent: Technical writing and knowledge capture

Dynamic Context Switching

# Large refactor example
1. Create detailed plan with checkpoint strategy
2. Implement core changes in chunks
3. Test each checkpoint before proceeding
4. Update plan with lessons learned
5. Continue or adjust based on results

Knowledge Preservation Strategies

# In plans/lessons-learned.md
## Problem: Authentication integration complexity
## Solution: Standardized token format across services
## Impact: 3 hours saved on future auth integrations
## Pattern: Define service contracts before implementation

Battle-Tested Best Practices

Through hundreds of hours of real development work, we've identified these critical practices that separate successful Vibe Coding from common pitfalls:

The "Plan Before Code" Discovery

The Key Rule: No code gets written until we agree on the plan.

Impact: This single rule eliminated nearly all wasted effort in our collaboration. When AI understands the full context upfront, implementation proceeds smoothly. When AI starts coding without complete context, it optimizes for the wrong requirements and creates work that must be discarded.

Why It Works: AI doesn't know what it doesn't know. Planning forces the human to surface all the context, constraints, and requirements that AI can't infer. Once established, execution becomes efficient and accurate.

The "Less is More" Philosophy

Pattern: Always choose the simplest solution that solves the actual problem.

❌ "Let me build a comprehensive framework that handles all edge cases"
✅ "Let me solve this specific problem and refactor when patterns emerge"

Why This Works: Complex solutions create technical debt and make future changes harder. Simple, targeted changes preserve architectural flexibility.

Surgical Changes Over Refactoring

Pattern: Modify only what needs changing, preserve working functionality.

# Good: Minimal, focused change
edit_block(
    file="service.py", 
    old="def process():\n    return data",
    new="def process():\n    validate_input()\n    return data"
)

# Avoid: Large refactoring that could break existing functionality

Why This Matters: Working software is valuable. Surgical changes reduce risk and maintain system stability.

Long-Running Process Handoffs

Critical Pattern: AI should never manage lengthy operations directly.

AI: "This database migration will take 15+ minutes. I'll provide the command 
and monitor approach rather than running it myself:

Command: python manage.py migrate --database=production
Monitor: Check logs every 2 minutes for progress
Rollback: python manage.py migrate --database=production 0001_initial

Would you prefer to run this yourself for better control?"

Human Advantage: Human oversight of long processes prevents resource waste and enables real-time decision making.

The Fallback Mechanism Trap

Anti-Pattern: "Let me add error handling to catch this edge case..."
Better Approach: "Let me understand why this edge case occurs and fix the root cause..."

❌ Fallback: Add try/catch to hide the real problem
✅ Root Cause: Investigate why the error happens and fix the source

Time Savings: Solving root problems prevents future debugging sessions and creates more maintainable code.

Verification-First Completion

Rule: Nothing is complete until it's been tested and verified.

AI Implementation → Human/AI Testing → Verification Complete
   ↑                                           ↓
   ←——————— Fix Issues If Found ←———————————————

Testing Handoff Options:

  • "Should I run the tests or would you prefer to verify?"
  • "Here's what needs testing: [specific scenarios]"
  • "Implementation ready for verification: [verification checklist]"

Getting Started with Vibe Coding

For Individual Developers

  1. Set up tools: Desktop Commander, AI assistant, documentation system
  2. Start small: Choose a well-defined feature or bug fix
  3. Practice patterns: Plan → Discuss → Implement → Verify
  4. Document learnings: Build your pattern library

For Teams

  1. Establish standards: File organization, documentation formats, handoff protocols
  2. Train together: Practice the methodology on shared projects
  3. Create templates: Standard plan formats, common decision trees
  4. Measure outcomes: Track speed and quality improvements

Success Metrics

  • Development velocity: Features delivered per sprint
  • Code quality: Bug rates, review feedback, maintainability
  • Knowledge retention: How quickly new team members become productive
  • Context preservation: Ability to resume work after interruptions

Conclusion: The Future of Development

Vibe Coding represents a fundamental shift from human-as-coder to human-as-conductor. By treating AI as a powerful but directed tool rather than a replacement, we achieve:

  • 10x velocity improvements without sacrificing quality
  • Better architecture through increased design thinking time
  • Preserved expertise via documentation and knowledge transfer
  • Scalable impact where senior engineers can guide multiple projects

This methodology isn't about replacing developers—it's about amplifying their impact. Senior engineers become force multipliers, able to execute complex projects that would normally require entire teams.

The companies that master human-AI collaboration today will dominate tomorrow's software landscape. Vibe Coding provides a proven framework for making that transition successfully.

Ready to Start?

Begin with a small, well-defined feature in your current project. Apply the Plan → Discuss → Implement → Verify cycle. Set up a /plans folder in your project and create your first development plan using the methodology outlined here.


Want to learn more? Contact us to discuss how Vibe Coding can transform your development process, or explore our Professional Services for enterprise implementations.

Real-World Example: Token Counter Implementation

To demonstrate this methodology in practice, here's an actual session from our development work. The context: we were working in Claude Desktop with system prompts providing project structure information and collaboration preferences.

The Initial Request

Human: "we could also add a token counter somewhere in the lit-desktop UI ... that's the kind of project that is super clear to a reader what we're after"

AI: "Perfect! A token counter in lit-desktop is an excellent demonstration project. It's:

  • Crystal clear goal: Everyone understands what a token counter does
  • Visual result: Immediate, tangible outcome users can see
  • Right scope: Substantial enough to show methodology, small enough to complete
  • Real value: Users actually want to track token usage"

Planning Phase (5 minutes)

Human: "i think it's per conversation. if you recall how you and I work here in claude desktop there's always this point about an hour into any project and we can both tell when it's approaching. i don't know how you know but I can tell by the size of the scroll bar..."

AI: Created detailed implementation plan covering:

  • Technical decisions (client-side approximation vs server-side)
  • UI placement (near text input for pre-send awareness)
  • Update frequency (200ms debounce)
  • Data flow (conversation total + live draft)

Architecture Research (5 minutes)

Before writing any code, we examined the existing lit-desktop structure:

  • Located Angular chat components
  • Found message input textarea with [(ngModel)]="currentInput"
  • Identified messages: ChatMessage[] array for conversation data
  • Determined optimal display location in status hint area

Implementation (14 minutes)

Service Creation: Built TokenCounterService with approximation algorithm

countTokens(text: string): number {
  const charBasedTokens = Math.ceil(text.length / 4);
  const wordBasedTokens = Math.ceil(text.trim().split(/\s+/).length / 0.75);
  return Math.round((charBasedTokens + wordBasedTokens) / 2);
}

Component Integration: Added token counting to chat page component

  • Injected service into existing constructor
  • Added properties for conversation and draft token counts
  • Integrated with message loading and session switching

Template Updates: Modified HTML to display counter

<span *ngIf="!isLoading">
  <span>Lit can make mistakes</span>
  <span *ngIf="tokenCountDisplay" class="token-counter"> • {{ tokenCountDisplay }}</span>
</span>

Problem Resolution (4 minutes)

Browser Compatibility Issue: Initial tokenizer library required Node.js modules

  • Problem: gpt-3-encoder needed fs/path modules unavailable in browser
  • Solution: Replaced with custom approximation algorithm

Duplicate Method: Accidentally created conflicting function - Problem: Created duplicate onInputChange method - Solution: Integrated token counting into existing method

Quality Assurance

Human: "are we capturing the event for switching sessions?"

This caught a gap in our implementation - token count wasn't updating when users switched conversations. We added the missing updates to selectChat() and createNewChat() methods.

Human: "instead + tokens how about what the new total would be"

UX improvement suggestion led to cleaner display format: - Before: "~4,847 tokens (+127 in draft)" - After: "~4,847 tokens (4,974 if sent)"

Final Result

Development Outcome: Successfully implemented token counter feature across 4 files with clean integration into existing Angular architecture. View the complete implementation.

Timeline (based on development session):

  • 14:30 - Planning and architecture discussion complete
  • 14:32 - Service implementation with token approximation algorithm
  • 14:34 - CSS styling for visual integration
  • 14:36 - HTML template updates for display
  • 14:40 - Component integration and event handling
  • 14:40-15:00 - Human stuck in meeting; AI waits
  • 15:03 - UX refinement and improved display format
  • 15:04 - Final verification and testing

Total active development time: 14 minutes (including planning, implementation, and verification)

What This Demonstrates

The session shows core Vibe Coding principles in action:

  • Human strategic direction: Clear problem definition and UX decisions
  • AI tactical execution: Architecture research and rapid implementation
  • Continuous verification: Testing and validation at each step
  • Quality collaboration: Human oversight caught integration gaps and suggested UX improvements
  • Surgical changes: Modified existing architecture rather than building from scratch
  • Context preservation: Detailed planning enabled seamless execution

The development session demonstrates how Vibe Coding enables complex feature development in minutes rather than hours, while maintaining high code quality through human oversight and systematic verification.


Want to experience Vibe Coding yourself? Start with our Platform Overview and begin experimenting with AI-assisted development. For enterprise implementations, contact our team to discuss how Vibe Coding can transform your development process.

About the Authors

Ben Vierck is a senior software architect and founder of Positronic AI, with over a decade of experience leading engineering teams at Fortune 100 companies. He developed the Vibe Coding methodology through hundreds of hours of real-world collaboration with AI development assistants while building production systems and open source projects.

This methodology has been battle-tested on the LIT Platform and numerous client projects, with every technique documented here proven in real development scenarios. The token counter example represents actual development work, with timestamps and outcomes verified through production deployment.


Tags: AI Development, Human-AI Collaboration, Software Engineering, Development Methodology, Productivity, AI Tools, Enterprise Development

Related Reading:

References


  1. Wikipedia contributors. "Vibe coding." Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Vibe_coding. Accessed June 20, 2025. 

  2. Merriam-Webster Dictionary. "Vibe coding." Slang & Trending, https://www.merriam-webster.com/slang/vibe-coding. Accessed June 20, 2025. 

Imperative vs. Declarative: A Concept That Built an Empire

For self-taught developers and those early in their careers, certain foundational concepts often remain unexamined. You pick up syntax, frameworks, and tools rapidly, but the underlying paradigms that shape how we think about code get overlooked.

These terms, imperative and declarative, sound academic but represent a simple distinction that transforms how you approach problems.

The Two Ways to Think About Problems

Imperative programming tells the computer exactly how to do something, step by step. Like giving someone furniture assembly instructions: "First, attach part A to part B using screw 3. Then insert dowel C into hole D."

Example:

const numbers = [1, 2, 3, 4, 5];

const doubled = [];
for (let i = 0; i < numbers.length; i++) {
  doubled.push(numbers[i] * 2);
}

Declarative programming describes what you want, letting the system figure out how. Like ordering at a restaurant: "I want a pepperoni pizza." You don't explain kneading dough or managing oven temperature.

Example:

const numbers = [1, 2, 3, 4, 5];

const doubled = numbers.map(n => n * 2);

Same result. But notice how the second approach abstracts away the loop management, index tracking, and array building. You declare your intent—"transform each number by doubling it"—and map handles the mechanics.

Why This Matters Beyond Syntax

The power becomes obvious when you scale up complexity. Consider drawing graphics:

Imperative (HTML Canvas):

const ctx = canvas.getContext('2d');
ctx.beginPath();
ctx.rect(50, 50, 100, 75);
ctx.fillStyle = 'red';
ctx.fill();
ctx.closePath();

Declarative (SVG):

<rect x="50" y="50" width="100" height="75" fill="red" />

The imperative version commands each drawing step. The declarative version simply states "there is a red rectangle here" and lets the renderer handle pixel manipulation, memory allocation, and screen updates.

The same pattern appears everywhere in modern development:

Database queries: SQL is declarative. You specify what data you want, not how to scan tables or optimize joins.

SELECT name FROM users WHERE age > 25

Configuration management: Tools like Ansible let you declare desired system states rather than scripting installation steps.

- name: Ensure Apache is installed and running
  service:
    name: apache2
    state: started

Modern JavaScript: Methods like filter, reduce, and find let you declare transformations instead of managing loops.

// Instead of imperative loops
const adults = [];
for (let i = 0; i < users.length; i++) {
  if (users[i].age >= 18) {
    adults.push(users[i]);
  }
}

// Write declarative transformations
const adults = users.filter(user => user.age >= 18);

The Billion-Dollar Story

Now let me tell you how this simple principle reshaped the entire tech industry. In 1999, a buddy of mine, Google employee #21, tried to recruit me from Microsoft. "You probably don't even need to interview," he said, showing me their server racks filled with cheap consumer hardware. While competitors bought expensive fault-tolerant systems, Google was betting everything on commodity machines and a radical programming approach.

The imperative approach would be a coordination nightmare. Send chunk 1 to server 47, chunk 2 to server 134, wait for responses, handle server failures, retry failed chunks, merge partial results... Multiply that across thousands of machines and you get unmanageable complexity.

Instead, Google developed what became known as MapReduce; a declarative paradigm for distributed computing. Engineers could write: Here's my map function (extract words from web pages). Here's my reduce function (count word frequencies). Process the entire web. This framework handled all the imperative details: data distribution, failure recovery, load balancing, result aggregation. Engineers declared what they wanted computed. The system figured out how to coordinate thousands of servers.

This wasn't just elegant computer science. It was competitive advantage. While competitors struggled with complex distributed systems built on expensive hardware, Google's engineers focused on algorithms and data insights. Their declarative approach to distributed computing let them scale faster and cheaper than anyone thought possible.

What my friend was showing me in 1999, commodity hardware coordinated by smart software that abstracted away distributed complexity, was MapReduce in action, years before the famous 2004 paper. That paper didn't introduce a new concept; it documented the practices that had already powered Google's rise to dominance.

The AI-Driven Transformation of Software Development

1. Introduction: The Seismic Shift in Software Development

The software development landscape is undergoing a seismic shift, driven by the rapid advancement of artificial intelligence. This transformation transcends simple automation; it fundamentally alters how software is created, acquired, and utilized, leading to a re-evaluation of the traditional 'build versus buy' calculus. The pace of this transformation is likely to accelerate, making it crucial for businesses and individuals to stay adaptable and informed.

2. The Rise of AI-Powered Development Tools

For decades, the software industry has been shaped by a tension between bespoke, custom-built solutions and readily available commercial products. The complexity and cost associated with developing software tailored to specific needs often pushed businesses towards purchasing off-the-shelf solutions, even if those solutions weren't a perfect fit. This gave rise to the dominance of large software vendors and the Software-as-a-Service (SaaS) model. However, AI is poised to disrupt this paradigm.

Introduction to AI-Powered Automation

Large Language Models (LLMs) are revolutionizing software development by understanding natural language instructions and generating code snippets, functions, or even entire modules. Imagine describing a software feature in plain language and having an AI produce the initial code. Many are already using tools like ChatGPT in this way, coaching the AI, suggesting revisions, and identifying improvements before testing the output.

This is 'vibe coding,' where senior engineers guide LLMs with high-level intent rather than writing every line of code. While this provides a significant productivity boost—say, a 5x improvement—the true transformative potential lies in a one-to-many dynamic, where a single expert can exponentially amplify their impact by managing numerous AI agents simultaneously, each focused on different project aspects.

Expanding AI Applications in Development

Additionally, AI is being used for code review tools that can automatically identify potential issues and suggest improvements, and specific AI platforms offered by cloud providers like AWS CodeWhisperer and Google Cloud's AI Platform are providing comprehensive AI-driven development environments. AI is being used for AI-assisted testing and debugging, identifying potential bugs, suggesting fixes, and automating test cases.

Composable Architectures and Orchestration

Beyond code completion and generation, AI tools are also facilitating the development of reusable components and services. This move toward composable architectures allows developers to break down complex tasks into smaller, modular units. These units, powered by AI, can then be easily assembled and orchestrated to create larger applications, increasing efficiency and flexibility. Model Context Protocol (MCP) could play a role in standardizing the discovery and invocation of these services.

Furthermore, LLM workflow orchestration is also becoming more prevalent, where AI models can manage and coordinate the execution of these modular services. This allows for dynamic and adaptable workflows that can be quickly changed or updated as needed.

Human Role and Importance

However, it's crucial to recognize that AI is a tool. Humans will still be needed to guide its development, provide creative direction, and critically evaluate the AI-generated outputs. Human problem-solving skills and domain expertise remain essential for ensuring software quality and effectiveness.

Impact on Productivity and Innovation

These tools are not just incremental improvements; they have the potential to dramatically increase developer productivity, potentially enabling the same output with half the staff or even leading to a fivefold increase in efficiency in the near term, lower the barrier to entry for software creation, and enable the fast iteration of new features.

Impact on Offshoring

Furthermore, AI tools have the potential to level the playing field for offshore development teams. Traditionally, challenges such as time zone differences, communication barriers, and perceived differences in skill level have sometimes put offshore teams at a disadvantage. However, AI-powered development tools can mitigate these challenges:

  • Enhanced Productivity and Efficiency: AI tools can automate many tasks, allowing offshore teams to deliver faster and more efficiently, overcoming potential time zone delays.
  • Improved Code Quality and Consistency: AI-assisted code generation, review, and testing tools can ensure high code quality and consistency, regardless of the team's location.
  • Reduced Communication Barriers: AI-powered translation and documentation tools can facilitate clearer communication and knowledge sharing.
  • Access to Cutting-Edge Technology: With cloud-based AI tools, offshore teams can access the same advanced technology as onshore teams, eliminating the need for expensive local infrastructure.
  • Focus on Specialization: Offshore teams can specialize in specific AI-related tasks, such as AI model training, data annotation, or AI-driven testing, becoming highly competitive in these areas.

By embracing AI tools, offshore teams can overcome traditional barriers and compete on an equal footing with onshore teams, offering high-quality software development services at potentially lower costs. This could lead to a more globalized and competitive software development landscape.

3. The Explosion of New Software and Features

This evolution is leading to an explosion of new software products and features. Individuals and small teams can now bring their ideas to life with unprecedented speed and efficiency. This is made possible by AI tools that can quickly translate high-level descriptions into working code, allowing for quicker prototyping and development cycles.

Crucial to the effectiveness of these AI tools is the quality of their training data. High-quality, diverse datasets enable AI models to generate more accurate and robust code. This is particularly impactful in niche markets, where highly specialized software solutions, previously uneconomical to develop, are now becoming viable.

For instance, AI could revolutionize enterprise applications with greater automation and integration capabilities, lead to more personalized and intuitive consumer apps, accelerate scientific discoveries by automating data analysis and simulations, or make embedded systems more intelligent and adaptable.

Furthermore, AI can analyze user data to identify areas for improvement and drive innovation, making software more responsive to user needs. While AI automates many tasks, human creativity and critical thinking are still vital for defining the vision and goals of software projects.

It's important to consider the potential environmental impact of this increased software development, including the energy consumption of training and running AI models. However, AI-driven software also offers opportunities for more efficient resource management and sustainability in other sectors, such as optimizing supply chains or reducing energy waste.

Software will evolve at an unprecedented pace, with AI facilitating fast feature iteration, updates, and highly personalized user experiences. This surge in productivity will likely lead to an explosion of new software products, features, and niche applications, democratizing software creation and lowering the barrier to entry.

4. The Transformation of the Commercial Software Market

This evolution is reshaping the commercial software market. The proliferation of high-quality, AI-enhanced open-source alternatives is putting significant pressure on proprietary vendors. As companies find they can achieve their software needs through internal development or by leveraging robust open-source solutions, they are becoming more price-sensitive and demanding greater value from commercial offerings.

This is forcing vendors to innovate not only in terms of features but also in their business models, with a greater emphasis on value-added services such as consulting, support, and integration expertise. Strategic partnerships and collaboration with open-source communities will also become crucial for commercial vendors to remain competitive.

Commercial software vendors will need to adapt to this shift by offering their functionalities as discoverable services via protocols like MCP. Instead of selling large, complex products, they might provide specialized services that can be easily integrated into other applications. This could lead to new business models centered around providing best-in-class, composable AI capabilities.

Specifically, this shift is leading to changes in priorities and value perceptions. Commercial software vendors will likely need to shift their focus towards providing value-added services such as consulting, support, and integration expertise as open-source alternatives become more competitive. Companies may place a greater emphasis on software that can be easily customized and integrated with their existing systems, potentially leading to a demand for more flexible and modular solutions.

Furthermore, commercial vendors may need to explore strategic partnerships and collaborations with open-source communities to remain competitive and utilize the collective intelligence of the open-source ecosystem.

Overall, AI-driven development has the potential to transform the software landscape, creating a more level playing field for open-source projects and putting significant pressure on the traditional commercial software market. Companies will likely need to adapt their strategies and offerings to remain competitive in this evolving environment.

5. The Impact on the Open-Source Ecosystem

The open-source ecosystem is experiencing a significant transformation driven by AI. AI-powered tools are not only lowering the barriers to contribution, making it easier for developers to participate and contribute, but they are also fundamentally changing the competitive landscape.

Specifically, AI fuels the creation of more robust, feature-rich, and well-maintained open-source software, making these projects even more viable alternatives to commercial offerings. Businesses, especially those sensitive to cost, will have more compelling free options to consider. This acceleration is leading to faster feature parity, where AI could enable open-source projects to rapidly catch up to or even surpass the feature sets of commercial software in certain domains, further reducing the perceived value proposition of paid solutions.

Moreover, the ability for companies to customize open-source software using AI tools could eliminate the need for costly customization services offered by commercial vendors, potentially resulting in customization at zero cost. The agility and flexibility of open-source development, aided by AI, enable quick innovation and experimentation, allowing companies to try new features and technologies more quickly and potentially reducing their reliance on proprietary software that might not be able to keep pace.

AI tools can also help expose open-source components as discoverable services, making them even more accessible and reusable. This can further accelerate the development and adoption of open-source software, as companies can easily integrate these services into their own applications.

Furthermore, the vibrant and collaborative nature of open-source communities, combined with AI tools, provides companies with access to a vast pool of expertise and support at no additional cost. This is accelerating the development cycle, improving code quality, and fostering an even more collaborative and innovative environment. As open-source projects become more mature and feature-rich, they present an increasingly compelling alternative to commercial software, further fueling the shift away from traditional proprietary solutions.

6. The Changing "Build Versus Buy" Calculus

Ultimately, the rise of AI in software development is driving a fundamental shift in the "build versus buy" calculus. The rise of composable architectures means that 'building' now often entails assembling and orchestrating existing services, rather than developing everything from scratch. This dramatically lowers the barrier to entry and makes building tailored solutions even more cost-effective.

Companies are finding that building their own tailored solutions, often on cloud infrastructure, is becoming increasingly cost-effective and strategically advantageous. The ability for companies to customize open-source software using AI could eliminate the need for costly customization services offered by commercial vendors.

Innovation and experimentation in open-source, aided by AI, could further reduce reliance on proprietary software. Robotic Process Automation (RPA) bots can also be exposed as services via MCP, allowing companies to integrate automated tasks into their workflows more easily. This further enhances the 'build' option, as businesses can employ pre-built RPA services to automate repetitive processes.

7. Cloud vs. On-Premise: A Re-evaluation

The potential for AI-driven, easier on-premise app development could indeed have significant implications for the cloud versus on-premise landscape, potentially leading to a shift in reliance on big cloud applications like Salesforce.

There's potential for reduced reliance on big cloud apps. If AI tools drastically simplify and accelerate the development of custom on-premise applications, companies that previously opted for cloud solutions due to the complexity and cost of in-house development might reconsider. They could build tailored solutions that precisely meet their unique needs without the ongoing subscription costs and potential vendor lock-in associated with large cloud platforms.

Furthermore, for organizations with strict data sovereignty requirements, regulatory constraints, or internal policies favoring on-premise control, the ability to easily build and maintain their own applications could be a major advantage. They could retain complete control over their data and infrastructure, addressing concerns that might have pushed them towards cloud solutions despite these preferences.

While cloud platforms offer extensive customization, truly bespoke requirements or deep integration with legacy on-premise systems can sometimes be challenging or costly to achieve. AI-powered development could empower companies to build on-premise applications that seamlessly integrate with their existing infrastructure and are precisely tailored to their workflows.

Composable architectures can also make on-premise development more manageable. Instead of building large, monolithic applications, companies can assemble smaller, more manageable services. This can reduce the complexity of on-premise development and make it a more viable option.

Additionally, while the initial investment in on-premise infrastructure and development might still be significant, the elimination of recurring subscription fees for large cloud platforms could lead to lower total cost of ownership (TCO) over the long term, especially for organizations with stable and predictable needs.

Finally, some organizations have security concerns related to storing sensitive data in the cloud, even with robust security measures in place. The ability to develop and host applications on their own infrastructure might offer a greater sense of control and potentially address these concerns, even if the actual security posture depends heavily on their internal capabilities.

However, several factors might limit the shift away from big cloud apps:

The "As-a-Service" Value Proposition

Cloud platforms like Salesforce offer more than just the application itself. They provide a comprehensive suite of services, including infrastructure management, scalability, security updates, platform maintenance, and often a rich ecosystem of integrations and third-party apps. Building and maintaining all of this in-house, even with AI assistance, could still be a significant undertaking.

Moreover, major cloud vendors invest heavily in research and development, constantly adding new features and capabilities, often leveraging cutting-edge AI themselves. This pace of innovation in the cloud might be difficult for on-premise development, even with AI tools, to keep pace with.

Cloud platforms are inherently designed for scalability and elasticity, allowing businesses to easily adjust resources based on demand. Replicating this level of flexibility on-premise can be complex and expensive. Many companies prefer to focus on their core business activities rather than managing IT infrastructure and application development, even if AI makes it easier; the "as-a-service" model offloads this burden.

Large cloud platforms often have vibrant ecosystems of developers, partners, and a wealth of documentation and community support. Building an equivalent internal ecosystem for on-premise development could be challenging. Some advanced features, particularly those leveraging large-scale data analytics and AI capabilities offered by the cloud providers themselves, might be difficult or impossible to replicate effectively on-premise.

Cloud providers might also shift towards offering more granular, composable services that can be easily integrated into various applications. This would allow companies to leverage the cloud's scalability and infrastructure while still maintaining flexibility and control over their applications.

Therefore, a more likely scenario might be the rise of hybrid approaches, where companies use AI to build custom on-premise applications for specific, sensitive, or highly customized needs, while still relying on cloud platforms for other functions like CRM, marketing automation, and general productivity tools.

While the advent of AI tools that simplify on-premise application development could certainly empower more companies to build their own solutions and potentially reduce their reliance on monolithic cloud applications like Salesforce, a complete exodus is unlikely. The value proposition of cloud platforms extends beyond just the software itself to encompass infrastructure management, scalability, innovation, and ecosystem.

Companies will likely weigh the benefits of greater control and customization offered by on-premise solutions against the convenience, scalability, and breadth of services provided by the cloud. We might see a more fragmented landscape where companies strategically choose the deployment model that best fits their specific needs and capabilities.

8. The AI-Driven Software Revolution: A Summary

The integration of advanced AI into software development is poised to trigger a profound shift, fundamentally altering how software is created, acquired, and utilized. This shift is characterized by:

1. Exponential Increase in Productivity and Innovation:

AI as a Force Multiplier: AI tools are drastically increasing developer productivity, potentially enabling the same output with half the staff or even leading to a fivefold increase in efficiency in the near term.

Cambrian Explosion of Software: This surge in productivity will likely lead to an explosion of new software products, features, and niche applications, democratizing software creation and lowering the barrier to entry.

Rapid Iteration and Personalization: Software will evolve at an unprecedented pace, with AI facilitating fast feature iteration, updates, and highly personalized user experiences. This will often involve complex LLM workflow orchestration to manage and coordinate the various AI-driven processes.

This impact will be felt across various types of software, from enterprise solutions to consumer apps, scientific tools, and embedded systems. The effectiveness of these AI tools relies heavily on the quality of their training data, and the ability to analyze user data will drive further innovation and personalization.

We must also consider the sustainability implications, including the energy consumption of AI models and the potential for AI-driven software to promote resource efficiency in other sectors. These changes are not static; they are part of a dynamic and rapidly evolving landscape. Tools like GitHub Copilot and AWS CodeWhisperer are already demonstrating the power of AI in modern development workflows.

2. Transformation of the Software Development Landscape:

Evolving Roles: The traditional role of a "coder" will diminish, with remaining developers focusing on AI prompt engineering, system architecture, including the design and management of complex LLM workflow orchestration, integration, service orchestration, MCP management, quality assurance, and ethical considerations.

This shift is particularly evident in the rise of vibe coding. More significantly, we're moving towards a one-to-many model where a single subject matter expert (SME) or senior engineer will manage and direct many LLM coding agents, each working on different parts of a project. This orchestration of AI agents will dramatically amplify the impact of senior engineers, allowing them to oversee and guide complex projects with unprecedented efficiency.

AI-Native Companies: New companies built around AI-driven development processes will emerge, potentially disrupting established software giants.

Democratization of Creation: Individuals in non-technical roles will become "citizen developers," creating and customizing software with AI assistance.

3. Broader Economic and Societal Impacts:

Automation Across Industries: The ease of creating custom software will accelerate automation in all sectors, leading to increased productivity but also potential job displacement.

Lower Software Costs: Development cost reductions will translate to lower software prices, making powerful tools more accessible.

New Business Models: New ways to monetize software will emerge, such as LLM features, data analytics, integration services, and specialized composable services offered via MCP.

Workforce Transformation: Educational institutions will need to adapt to train a workforce for skills like AI ethics, prompt engineering, and high-level system design.

Ethical and Security Concerns: Increased reliance on AI raises ethical concerns about bias, privacy, and security vulnerabilities. This includes the challenges of handling sensitive data when using AI tools.

4. Implications for Purchasing Software Today:

Short-Term vs. Long-Term: Businesses must balance immediate needs with the potential for cheaper and better AI-driven alternatives in the future.

Flexibility and Scalability: Prioritizing flexible, scalable, and cloud-based solutions is crucial.

Avoiding Lock-In: Companies should be cautious about long-term contracts and proprietary solutions that might become outdated quickly.

5. Google Firebase Studio as an Example:

AI-Powered Development: Firebase Studio's integration of Gemini and AI agents for prototyping, feature development, and code assistance exemplifies the trend towards AI-driven development environments.

Rapid Prototyping and Iteration: The ability to create functional prototypes from prompts and iterate quickly with AI support validates the potential for an explosion of new software offerings.

In essence, the AI-driven software revolution represents a fundamental shift in the "build versus buy" calculus, empowering businesses and individuals to create tailored solutions more efficiently and affordably. While challenges exist, the long-term trend points towards a more open, flexible, and dynamic software ecosystem. It's important to remember that AI is a tool that amplifies human capabilities, and human ingenuity will remain at the core of software innovation.

9. Conclusion: A More Open and Dynamic Software Ecosystem

In conclusion, the advancements in AI are ushering in an era of unprecedented change in software development. This transformation promises to democratize software creation, accelerate innovation, and empower businesses to build highly customized solutions. While challenges remain, the long-term trend suggests a move towards a more open, composable, flexible, and user-centric software ecosystem, increasingly driven by discoverable services. Furthermore, the pace of these changes is likely to accelerate, making adaptability and continuous learning crucial for both businesses and individuals.